

2軸5G加速度計

お問い合わせ

フラウンホーファー研究機構 エレクトロ・ナノシステム(ENAS)

Technologie-Campus 3 09126 Chemnitz | Germany

担当者

Dr. Maik Wiemer

電話番号: +49 371 45001-233

電子メール:

maik.wiemer@enas.fraunhofer.de

Dirk Wünsch

電話番号: +49 371 45001-262

電子メール:

dirk.wuensch@enas.fraunhofer.de

図: 最終的な5G加速度計システムの概略断面図 および写真

表: 2軸加速度計システムの仕様

写真提供:

フラウンホーファーENAS

このデータシートに含まれる全ての情報は、初期段階のものであり、変更されることがあります。また、 ここに記載のシステム、材料およびプロセスは、市 販の製品ではありません。 デモンストレータとして示すのはMEMSを使用した2軸5G加速度計です。これは、MEMSトランスデューサ、読み出し・制御電子回路(ASIC)、および受動素子を実装したプリント回路基板で構成されます。部品はすべて、市販する標準パッケージに搭載されています。表1にこの加速度計の主な仕様を示します。

パラメータ	記号	値	単位
測定範囲	\pm	5	G
帯域幅		500	Hz
分解能		14	ビット
分解能 (14ビット のLSB)		0.3	Mg
動作温度範囲		-40 ~+85	°C
耐衝撃性		50	G
ノイズ		200	μg/√Hz
電源	+	5	V

図1に最終的な5G加速度計の原理を概略 的に示します。AC-5GはMEMSトランスデュ ーサ、AAMSはASICを表しています。 5G加速度計は微小電気機械システム (MEMS)として実現されます。このような 加速度計システムは大きく2つの部分から なります。

- 1. 機械的変位を容量変化に変換する 微小機械電気トランスデューサ。このプロジェクトでは、フラウンホーファーENAS独自 のBDRIE技法を用いて製造された2軸(x-y) トランスデューサを使用しています。
- 2. トランスデューサの読み出し/制御用アナログスイッチドキャパシタモジュール、メモリ/トリムユニットを備えた関連信号処理用デジタルモジュール、およびシリアルペリフェラルインタフェース (SPI) として実装されたインタフェースを搭載したASIC。 ASICは、X-FAB社によって同社の「HX018」180 nm技術を用いて製造されます。

完全に機能する加速度計デバイスとするために、上記の両主要部品を以下によって補 完します。

- ASICに周辺(受動)回路を提供するPCB
- PCBとトランスデューサの両方を搭載し、 これらの部品を最終的な加速度計デバイ スとしてまとめるパッケージ

