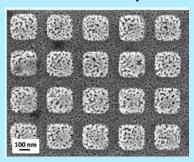
Low Temperature Bonding by using Nanoporous Gold

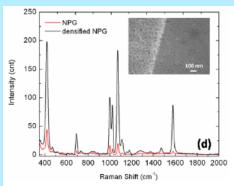
Dr. Wei-Shan Wang
Department System Packaging
Fraunhofer Institute for Electronic Nano Systems ENAS

International Symposium on Smart Integrated Systems, Chemnitz, 12.08.2014

Outline

- Introduction of nanoporous metals
- Low temperature bonding by using nanoporous gold
 - Substrate bonding at low temperature
 - Substrate bonding by using plasma-activated porous gold
 - heterogeneous bonding
- Summary and outlook

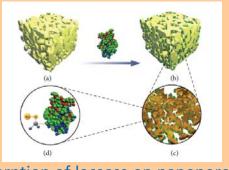




Nanostructured Metals

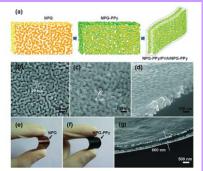
highly active surface area sensors, actuators, catalysis, packaging...

As SERS Template



SERS spectra of benzenethiol molecules
Nanotechnology 22, 295302, 2011

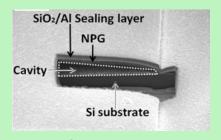
SERS: surface-enhancement Raman scattering


Enzyme-Based Biosensors

Adsorption of lacease on nanoporous Au

J. Phys. Chem. C 112, 14781, 2008

Energy systems



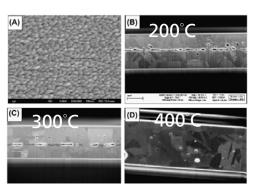
Nanoporous Au for supercapacitors Adv. Mater. 23, 4098, 2011

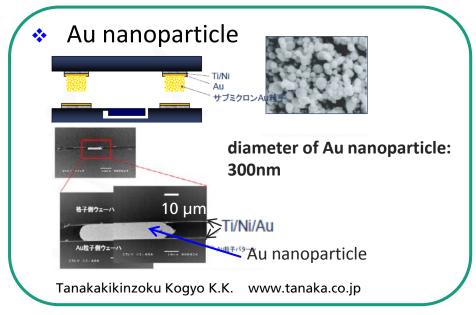
Packaging Applications

Low temperature bonding 2012 IEEE Sensors, 355, 2012

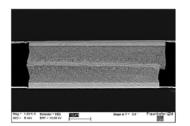
Thin film encapsulation *J. Microelec Sys.* **12**, 998, 2013

Bonding by using Nanostructured Metals


Nano-lawn Au


wire diameter 600nm, length 1-5 microns

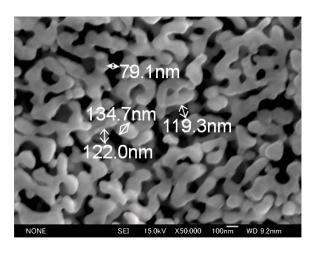
S. Fiedler et al., *IEEE Electron Systeminte.Tech. conference*, 886, 2006.

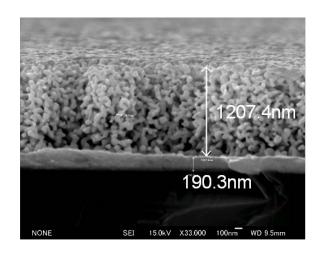

Copper nanorod array

P.I. Wang et.al., Electrochemical and Solid-State Letters, 12 4 H138-H141 2009 . (Rensselaer Polytechnic Institute, USA)

Nanoporous Au bump

H. Oppermann and L. Dietrich, *Microelectronics Reliability* 52, 356, 2012

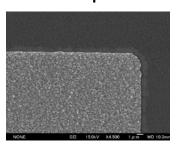


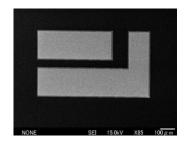


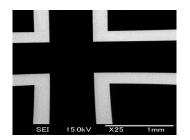
Structure of Nanoporous Gold

Top view

Cross section




thickness:


from hundreds of nm up to several µm

- porous size:
 - around 100nm
- **ligament size:** up to 100nm

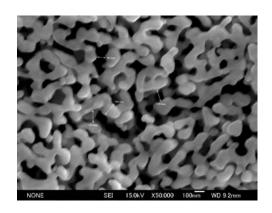
Patterned porous Au

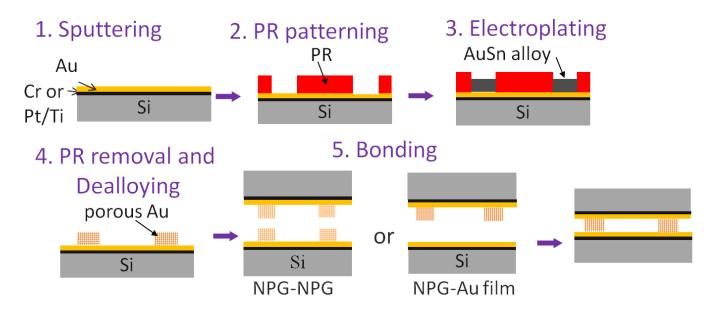
pad width:

40~700μm

■frame width:

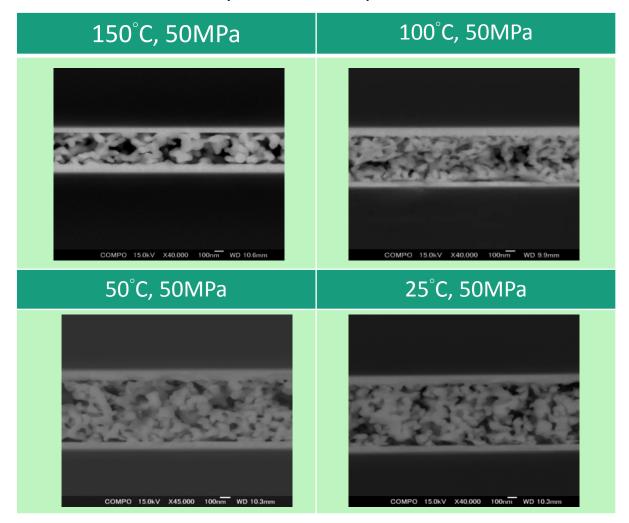
 $100^{\sim}500\mu m$

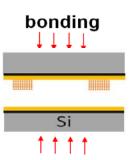




Concept of using Porous Au for Bonding

- High surface to volume ratio
- Low temperature bonding (thermalcompression)
- Electrical inter-connection achieved during bonding
- Sponge-like compressibility, tolerate implanarities





Substrate bonding by using plasma-activated NPG

bonded at room temperature with plasma-activated NPG

■NPG thickness:

400-800nm, flexible thickness control for bonding

■Au thin film:

200nm

■Bonding condition:

in ambient air

Cooperation - special strengths

JAPAN (Sendai)

Prototype

- Provide key components to systems
- Pioneer leading-edge research
- Open research environment with plenty of home made equipments
- Process by researchers: flexible & novel

GERMANY (Chemnitz)

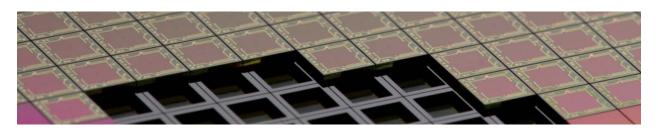
Wafer level

- Smart system integration and reliability
- In preparation for industrially mass production and back end of line
- Latest commercialized equipments including class 10 cleanroom
- Process by technician: professional & stable

Application

Summary and Outlook

- Characteristics of Nanoporous Gold
 - MEMS-compatible fabrication process
 - High surface area:
 - decrease bonding temperature down to 200°C or even at room temperature
 - potential candidate for heterogeneous bonding
 - Sponge-like compressibility:
 - bonding without critical requirements of surface cleanliness and roughness
 - Flexible control of thickness:
 - bonding achieved regardless of thickness of NPG
- More Possibilities of Nanoporous Metals
 - Advanced materials for packaging
 - As catalysts for electrochemical applications
 - Biosensors, chemical and physical sensors
 - Energy storage/conversion systems



Thank you for your attention

Contact

Dr. Wei-Shan Wang

Fraunhofer ENAS
Department System Packaging

Mail: wei-

shan.wang@enas.fraunhofer.de

Phone: 0371-45001-495

Technologie-Campus-3 09126 Chemnitz Germany

