

37th Chemnitz Seminar »Electronic Packaging and Applications«

Latest Progress of Plating Equipment for Al plating from ionic liquids

Chemnitz

14.06.2023

Outline

- NBT introduction
- ENAS / NBT history of cooperation
- Motivation / applications
- Status of Al plating at ENAS / NBT
- Status of tooling solutions
- Roadmap

NBT Facts and Figures

Ownership: 100% private, founded 2004

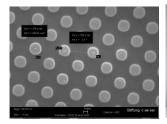
- Mike Becker, Dipl.-Ing. in Electrical Engineering, more than 25 years experience in R&D on electroplating, MEMS switches and medical devices, solar cell manufacture
- Dr. Dietmar Lütke Notarp, Ph.D in Electrical Engineering, more than 30 years of experience in R&D on electroplating, MEMS, medical devices, tool engineering, solar cells manufacture, medical industry, mechanical engineering

Locations: 3 sites (Germany)

- Bremen: Headquarters, production chemical products, R&D center, lab & cleanroom
- ▼ Frechen (Cologne): Production medical components
- Marsdorf (Cologne): Office, Tool construction & manufacture, R&D

Staff

- ~19 employees incl. assistants
 - + technical teams on demand (scientists & engineers)


NBT services and product fields



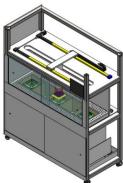
Consulting, prototyping, seminars

Screen printing & Nanoimprint stamps

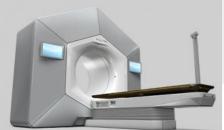
sunstence® uni (fine line, distortion-free, precision alignment)

Plating tools

suncup[®] (plating cell for lab and production)



- NB Semiplate series (Ni, NiMn, Au, Cu, Ag, Sn, In, Bi, AuPd,...)
- Distribution partner MicroChemicals GmbH



Etching solutions (seed layer etching)

- Cu etch, Au etch, TiW etch, Cr etch
- (least undercut, least dimension loss)

Medical Device Components

Cancer treatment devices

Focus & Mission I

As manufacturer & vendor we provide

(ISO 9001:2015 certified since 2017)

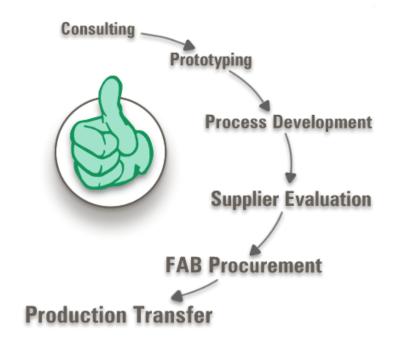
- components for medical therapy system
- consumables for plating and etching (solutions)
- electroplating tools for R&D and production
- screens and screen printing products (pastes, resists)

Screen manufacturing in China
Joint Venture: Frintrup NB SST (Kunshan)

Focus & Mission II

As **engineering house** we provide worldwide consultancy and support services

Your Vision - Our Mission!


We help to "overcome barriers" to achieve your business ideas.

NBT is Entirety

We find an overall solution - whatever the requirement is in the field of

Semiconductor & Microsystem Technology Medical Microsystems

Mechanical & Systems Engineering

MEMS for Telecommunication

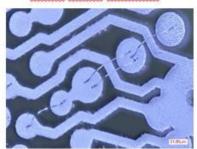
Solar Energy / Photovoltaics / Hydrogen

Nanobiotechnology

Screen printing / Nanoimprint

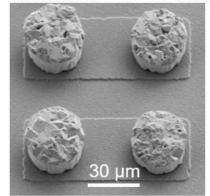
We accompany the way from the first product idea up to the mass production.

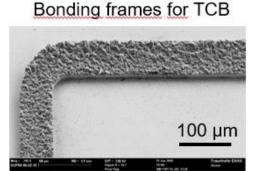
NBT / ENAS history of cooperation


- ENAS / TUC / NBT share a decade of history of joint (public funded) cooperation projects
 - Plating of reactive multilayers (RMS) for packaging, silicon through vias (TSV)
 - 2015 first joint project on Al-plating
 AIOLI (BMBF funded project (FKZ16ES0331) (finished 2018)
 - ▼ Total 5 public funded projects finished/running, 3 more projects applied for
- Over many years, ENAS has built up considerable expertise on Al-plating for different applications
- NBT's focus on equipment solutions


Motivation aspects

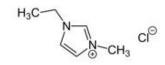
nb technologies consulting engineers

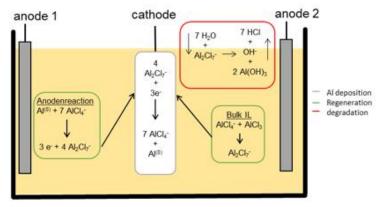

- Perspective on material cost & availability (Cu 3.5x more expensive, increasing demand)
- Al and Al alloys are common materials in microsystem technology / microelectronics
 - Conductive paths
 - Bonding material
 - Bonding pads
 - Optical layer
- PVD is usually limited in layer thickness
- ⇒ ECD
 - enables thick, dense and patterned layers
 - can be used for conformal coating (e.g. vias, grooves)
 - ⇒ New application fields for Al using ECD


Al RDL on PCB with wire bonds

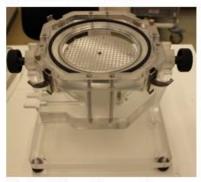
Al Pillars for Flip Chip bonding

Source: ENAS




Basics of Al-ECD from ionic liquids

- E⁰_{Al}= -1,67 V vs. NHE → deposition from aqueous solutions is not possible
 - → ionic liquids (IIs) are used
- ILs= organic salts with a melting temperature < 100 °C</p>
 - Properties are tunable by varying the composition
 - Wide electrochemical window
- Use of EMImCl/AlCl₃ 1:1,5 (~150 g/l Al)
 (1-Ethyl-3-methylimidazolium chloride / Al chloride)


- Moisture sensitivity of IL
 - Degradation when exposed to moisture
 - > HCl (gas) generation
 - Controlled humidity atmosphere required
 - Challenges for plating equipment

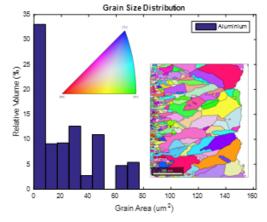
ECD process for double-side deposition and reaction equations

Glovebox with N2 atmosphere

6 inch plating unit, manual deposition equpiment

Source: ENAS

Facts & Figures


Deposition and layer properties

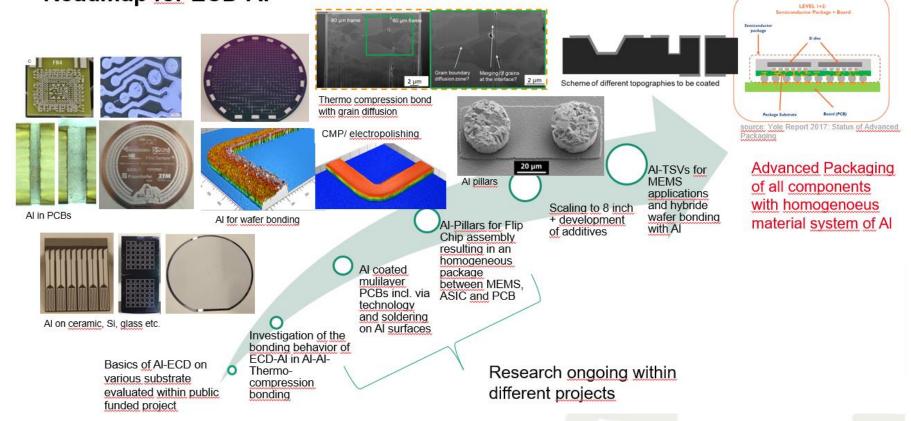
- Deposition of pure Al (EDX analysis with no contaminations)
- Deposition rate: 70 nm/min...300 nm/min depending on seed layer and deposition parameters
- Thickness: up to 40 μm (thicker possible but not tested yet)
- Deposition inhomogeneity < ± 15 % (deposition process and equipment can still be optimized)
- No specific grain orientation
- Grain boundaries are thermally active → merging of grains possible
- Layer stress ~ 38 MPa
- Thermal conductivity ~230 W/(m*K)
- Roughness increases with layer thickness
 - CMP treatment or electro polishing possible
 - Additives for electrolyte under investigation
- Smallest structure until now:
 8 µm width, 10-15 µm height (in resist)

Material	Spec. electrical resistance [10-8 Ωm]
ECD-AI	3,03
PVD-AI	3,44
Bulk Al	2,65

FIB preparation of 30 µm thick Al layer on highly doped Si

EBSD measurement of grain size and grain orientation

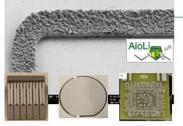
Source: ENAS

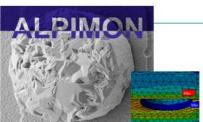


ENAS Roadmap (I)

Roadmap for ECD-Al

Source: ENAS




ENAS Roadmap (II)

Aluminum ECD

Technology Roadmap

Thick Al layers > 70 µm (power electronics, X-ray, thermal management)

Al-Coat4Industry

AlPacka (DVS / AiF)

Al- Pillars + Simulation Bonden/ECD

Weiterentwicklung der Anlagentechnik hin zu 14.0 (Sensorik, KI, Closed Loop)

ALEKTRO TBD

Fügetechnologien für Al PCB- bzw. Wafersubstrate (DB, Löten, Kleben)

AI-TSV/TGV TBD AI für TSVs und TGVs

AioLi KMU-Innovativ IKT

Verbindungstechnik

Waferlevel-Prozess zur Abscheidung dicker Aluminium-Schichten für die Aufbau- und

2018

EF ENAS

Untersuchung des ECD-Al für das Al-Al-TKB auf Waferebene

2020

AlLess (EF SP) E-less Alu zur Seed.

2021

ALMA ZIM

Al-Vias für Leiterplatte

ALPIMON SME

Al-Pillar Bondtechnologie

layer Herstellung

2022

2023

2024

Alox TBD

Al als Viamaterial in der Keramikleiterplatte

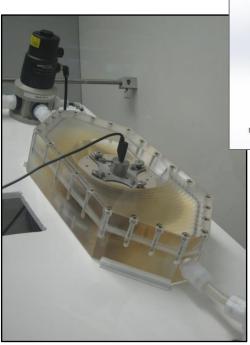
2025

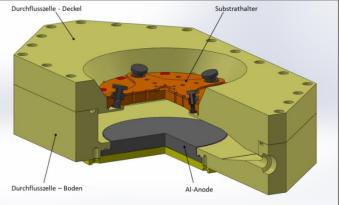
2026

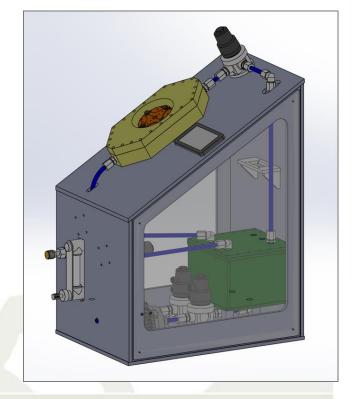
Source: ENAS

History - NBT & Aluminum Plating Tool

Project AIOLI (BMBF funded project AIOLI (FKZ16ES0331) (finished 2018)


- Motivation: Plating Al for Printed Circuit Boards and semiconductor wafers
- Bench top tool for plating (SFC) on 100 wafer substrate realized


Supported by:


on the basis of a decision by the German Bundestag

Safe Flow Cell (SFC)

Present Aluminum Plating Tools (I)

Project ALMA (2021 – 2023)

Federal Ministry of Education and Research

SPONSORED BY THE

(FKZ KK5092601FF0)

Motivation:

- Plating Al for Printed Circuit Boards
- Realize tooling solution close to commercialisation for replacing Cu in next generation PCB technology
- Status: under construction to be finished middle of 2023

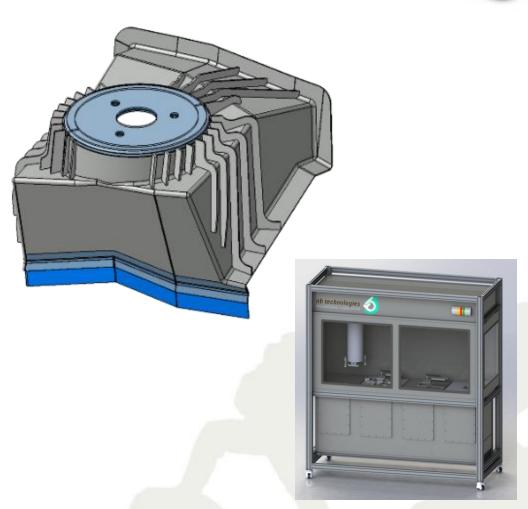
Partners:

- NB Technologies GmbH
- Jenaer Leiterplatten GmbH
- Ionic Liquid Technologies GmbH
- ICA Analytik GbR
- Fraunhofer ENAS
- TU Chemnitz

Present Aluminum Plating Tools (II)

Project CastCo (2022 – 2025)

(FKZ 03LB2046D)


Supported by:

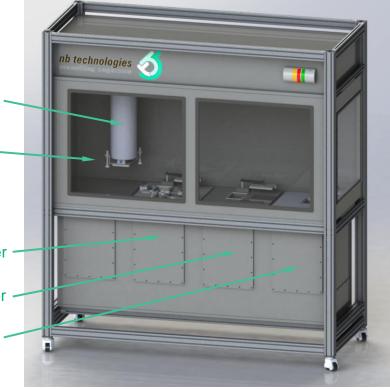
on the basis of a decision by the German Bundestag

Motivation:

- Plating of AlSi alloys for lightweight diecast components in car bodies
 - CO₂ and weight reduction (process & operation)
- Realize plating tool for reproducible deposition of AlSi for 3D components
- Challenges: 3D, alloy with Si
- Status: under construction, tool to be finished middle of 2024

Tool overview & main features

- Double side plating for substrates up to 160mm x 160mm
 - **┏** PCB, semiconductor wafer, ceramic, glass
- Controlled atmosphere in handling chamber
 - HCl sensor, humidity sensor (humidity <50ppm)</p>
 - load lock
 - exhaust
- Process chamber for ionic liquid
 - 15 to 20 liters
 - indirect heating up to 50°C
 - circulation & filtration
 - workpiece agitation (x-direction)
- Rinsing chamber (rinsing ionic liquid)
- xz handling system
 - anode extraction handling


xz-handling

handling chamber

Al plating chamber

rinsing chamber

load lock

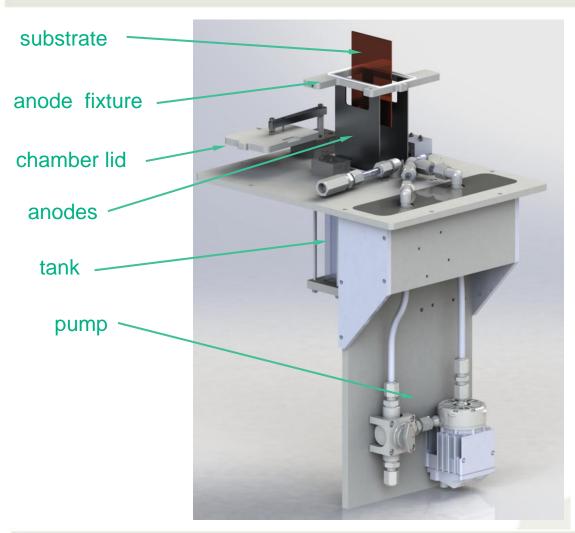
Material challenges:

Usable: PTFE, PMMA, PEEK, titanium, glass, PFA

Not usable: stainless steel, PP, PVC, PE, PA, PVDF, FKM, EPDM, FPM, silicone

Tool dimensions & media

Dimensions

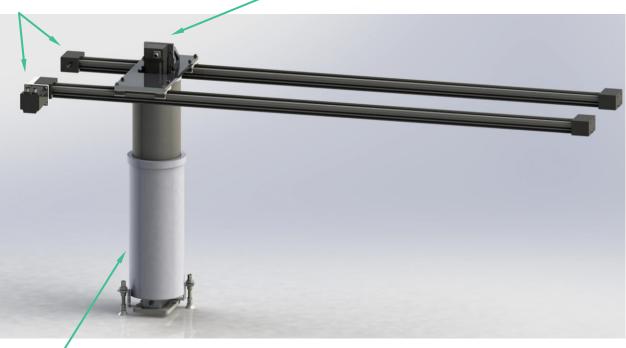

width: 1,80 mheight: 1,95 mdepth: 0,80 m

Media & connections

- power
- compressed air
- nitrogen
- rinse liquid
- waste connection
- fill & drain
- offline analytic tap

Plating process chamber

- Anode fixture/anodes: removable by robot in idle time
- Agitation: substrate agitation possible in x- and z- direction by robot arm
- Lids:


 pneumatic closure
 (extra closure-lid for process attached to handling unit)
 (not shown)
- Heating: indirect heating by jacket heating
- Circulation pump:
 flow rate electronically controlled
 via rotation rate

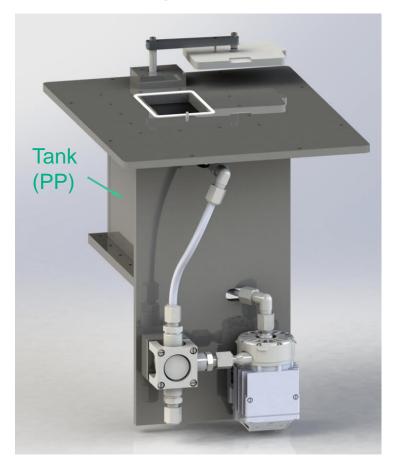
xz-handling unit

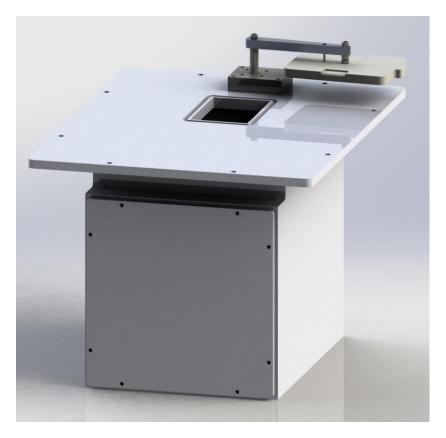
x-axis handling unit

z-axis handling unit

cover for z-axis handling unit

anode extraction unit


lid with substrate holder -


Rinsing chamber & load lock

Rinsing chamber

Load lock

Outlook - Aluminum Plating Tool (III)

Commercialisation - Automated Plating Tool (planned for end of 2024)

Motivation: Provide commercially available solution for R&D and production purpose

- Solve "chicken and egg" situation
 - Facilitate considerating new technologies and application by involving Al-plating
- Enable introduction of Al plating for market participants
- Enlarge user community

Platform:

- Use existing industry-accepted platform,
 e.g. ClassOne Soltice® S4
- Extent/modify platform for Al-plating features
- Fully automated, dry in / dry out

Status: Design phase (available for end of 2024)

(source https://classone.com/plating-surface-preparation-systems/solstice-s4solstice-s4-automated-electroplating-systems/)

NBT Equipment Roadmap

Continuous advancements of equipment up to production capabilities

on the basis of a decision by the German Bundestag

AioLiAl for packaging

basic manual lab tool flow cell wafer level plating

ALMAAl-Vias for PCB

IL analytics (ICA GbR) tool enhancements semi-automation

"Almight one"
Al plating for wafer

200mm substrates fully automated dry in / dry out

AlSi alloy for diecast

alloy plating advanced handling & rinsing (substrate / IL / atmosphere) IL recycling (IOLITEC)

"Almight 3D"
AlSi plating for diecast

AlSi plating for 3D components

2018

2021

2022

2023

2024

2025

2026

2027